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QSAR analyses were performed on a series of trans-stilbenoid diaryl compounds for modeling their COX-2
inhibitory activities. The multivariate regression equations were developed with the selected independent
variables using various feature selection methods. In addition, model training was done using different test-
train data selection methods. The applicability of each variable and the test-train selection methods was
investigated through the type and number of the selected significant descriptors as well as the statistical
criteria of the developed model for each pair of feature and test-train selection methods. The goodness of fit
and the statistical significance of 15 developed equations were evaluated using the correlation coefficient
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ng_z selective inhibition (R), the variance ratio (F), and the standard error of estimate (S.E.). The models were validated using the
QSAR leave many out and the leave one out cross-validation methods. The mean percentage deviation (MPD

(£SD)) was used as an accuracy criterion for checking the predicted activities. It was found that the
developed models could predict the COX-2 and COX-1 inhibitory activities as well as the COX-2/COX-1

Feature selection
Test-train selection

selectivity ratios producing the MPD values of 1.6 (4 0.8)%, 7.7 (£ 5.6)%, and 16.9 (& 9.6)%, respectively.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) act as anti-
inflammatory agents through the inhibition of cyclooxygenase
(COX) which catalyzes the conversion of arachidonic acid (AA) to
prostaglandins (PGs). Cyclooxygenase is known to occur in at least
two isoforms: COX-1 which is a constitutive enzyme responsible for
the maintenance of physiologic homeostasis, and COX-2 which is
an inducible isoform that leads to inflammation. This discovery has
led to the theory that the inhibition of COX-1 causes some side
effects of NSAIDs such as gastric ulceration, bleeding, and renal
function suppression, whereas the inhibition of COX-2 accounts for
the therapeutic effects of NSAIDs [1].

All classical NSAIDs, such as aspirin, ibuprofen, and indometh-
acin, are capable of inhibiting both COX-1 and COX-2; however,
they are found to bind more tightly to COX-1. As a result, these
drugs are associated with a high risk of gastrointestinal effects as
well as adverse effects of the renal function. Owing to these prob-
lems, researchers have made attempts to increase the
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gastrointestinal safety of new entities by increasing the selectivity
of the COX-2, thereby reducing the COX-1 inhibitory effect. The
major finding in this area is attributed to the initial evidences of
anti-inflammatory effects without ulcerogenic effects in DuP-697
(a diaryl heterocyclic). Subsequently, a number of selective COX-2
inhibitors with proven therapeutic utility for the treatment of
inflammation such as celecoxib, rofecoxib, valdecoxib, and etor-
icoxib, have been developed [2].

However, the use of specific COX-2 selective drugs was a failure
owing to their cardiovascular side effects that occurred because of
the inhibition of prostaglandins secretion which is required for the
normal functioning of the cardiovascular system and is produced
by COX-1 isoform [3].

In search for selective COX-2 inhibitors using conventional drug
development and synthesis methods, the concept of QSAR was
exploited in modifying conventionally available NSAIDs in the hope of
reducing the development time and cost. It is now well known that
the QSAR modeling method is capable of identifying failures in the
early stage of drug development, which helps to resume the sources.

The majority of selective COX-2 inhibitors belong to a class of
tricyclic compounds possessing 1,2-diaryle substitution on a central
heterocyclic, or carbocyclic ring. Recently, a number of compounds
that occur in nature [1] and are synthetic trans stilbenoid [4, 5]
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were evaluated as COX-2 selective inhibitors and their structure —
activity relationships were investigated [6].

Since the QSAR analysis of these newly developed drug candi-
dates is abandoned, there is only a study of resveratrol analogues
[1]; also, there has been no further study of the inhibitory activity
or the selectivity of COX-2. Such studies might help in the design
and synthesis of better selective COX-2/COX-1 inhibitors with
reduced side effects. Thus, the aim of the present study is to present
the QSAR of these compounds.

The purpose of developing a QSAR model is to reduce the cost of
the target designing by modifying the molecular structures for
achieving the desired molecule with the proposed property,
without experimental measurement [7]. Subsequently, an ideal
QSAR model should be capable of accurately predicting the desired
property of a newly synthesized or a hypothetical molecule. The
main steps for the development of a QSAR model could be
summarized as: data preparation, data analysis, and model
validation. Firstly, to obtain a valid model with high predictive
ability, the data used for developing the model (training data set)
should be carefully selected to cover all spaces of the row data set,
and subsequently, the relevant descriptors should be selected using
the appropriate descriptor selection method which can identify
relevant variables. In this study, three frequently used test-train
selection methods were investigated along with five feature
selection procedures to determine the most appropriate data
splitting and descriptor selection methods. The developed models
were used for predicting the COX-2, COX-1 and COX-2/COX-1
inhibitory activity of resveratrol analogues.

2. QSAR model development
2.1. Data preparation
2.1.1. Experimental data

Four data sets of COX-2 selective inhibitors (a total of 54 data
points) were collected from the literature [1, 4, 5] (Table 1). The
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selected structures were diaryl entities that were linked together
through a diatomic (C=C, N=N, C=N, N=C) linker (Fig. 1). The
experimental ICso values (50% inhibitory concentration of the
enzyme) were evaluated in a cellular assay using human whole
blood. The enzyme inhibition data were converted to negative
logarithmic value (concentration expressed in mole per liter) and
subsequently used as the response variable for QSAR analyses. In
order to minimize the inter laboratory differences between eval-
uations, all pICsg values were divided to celecoxib's pICsg value
which was evaluated and reported for each data set. The
normalized experimental values (Y; for COX-1 inhibition, Y for
COX-2 inhibition, and Ys for the ratio Y,/Y;) were then used for
further analyses. In order to identify the outliers we used two
different methods (i.e. PCA map and standard scores). There is
a general agreement that there is not a single approach to identify
all outliers, then we tried to use two approaches one in descriptor
space (PCA plot of scores) and the other in response space
(standard score) prior to the numerical analysis. The PCA plot of
scores (Fig. 2) identified two outliers (compounds 11w, 12w).
Further investigations of these two molecules showed that they
have very high molecular weights (531.59 and 615.77, respec-
tively) comparing with the mean value of all data (296.02). Also
the logP values of these molecules are significantly more than the
mean logP of other molecules in the data set. These characteristics
are because of the large functional groups on Ry and R3 situations
(3,4-(0OCONHCgH5), and 3,4-(OCONHCgH4-p-i-CsH7), respectively
for 11w and 12w) which also could lead to different mechanism of
interaction with the receptor. Because of these characteristics and
low potency (high drug concentrations) which could be a result of
their chemical characteristics, these two molecules excluded as
outliers from the analysis. In order to identify the outliers in
response space we conducted a standard score analysis and the
results showed that there are four molecules (Res 9—12) with
standard score near or more than 2.5 which could be expected as
outlier (Fig. 3). The further studies showed that these molecules
are very potent molecules with low concentrations (at least ten
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Fig. 1. Structures of selected stilbenoid diaryl compounds.
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Fig. 2. PCA scores plot based on calculated variables where the first two components
were autofitted. Outliers are outside circle.

times less than the mean concentration of other molecules) and
we decided to omit these four molecules as outliers too.

2.1.2. Molecular descriptors

The 2D structures of all molecules were drawn and converted to
3D structures using the Hyper-Chem 7 software. The model built
and the molecular mechanics energy minimized molecules were
used as inputs for the Dragon 5.4 software. The software was used
for calculating 20 subsets of molecular descriptors including: 2D
autocorrelation, 3D-Morse descriptors, Atom-centered fragments,
Burden eigenvalues, Connectivity indices, Constitutional descrip-
tors, Edge adjacency indices, Eigenvalue-based indices, Functional
group counts, Geometrical descriptors, GETAWAY descriptors,
Information indices, Molecular properties, Randic molecular
profiles, RDF descriptors, Topological charge indices, Topological
descriptors, Walk and path counts, and WHIM descriptors. The
structural parameters calculated after discarding the constant and
near constant values (1217 descriptors) were saved and further
analyzed using the SPSS and MATLAB software.

2.2. Data analysis
2.2.1. Selection of the training and test sets

The training set plays an important role in developing the
properties of the model since the more similar molecules for
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Fig. 3. Standard score plot of normalized COX inhibitory activity of the investigated
compounds. Outliers are in the circle.

training the model, the more accurate are the expected results.
Thus, the selection of the training and test sets is one of the most
important steps in QSAR model development. An ideal division of
a training and test set will lead to data sets with the following
criteria: (i) similarity of all representative compounds of the test set
in multidimensional descriptor space to the training set; (ii) simi-
larity of all representative compounds of the training set to the test
set; and (iii) distribution of the training set representative points
within the whole area occupied by the entire data set [8]. In other
words, an ideal splitting leads to a test set in which each of its
members is close to at least one member of the training set [7].
Several attempts were made to develop rational approaches for
selecting the training and test data sets. The frequently used
methods are straightforward random selection through activity
sampling, systematic clustering techniques such as K means algo-
rithm and hierarchical clustering, self organizing maps such as
Kohonen's maps, formal statistical experimental design such as
fractional and factorial designs, and sphere exclusion algorithms
[7]. Among these, the activity sampling and clustering techniques
are the most frequently used methods. In this study, both methods
were used and the results were compared to determine their
possible advantages and limitations (Table 2).

2.2.1.1. Activity sampling (AS). Activity sampling or activity splitting
is one of the most frequently used methods for selecting test and
training data sets. In this method, the activity or property to be
modeled is used to split the data set into bins and the test and
training data sets are selected randomly from each bin. In this
study, the data was sorted owing to the inhibitory activity (pICsg),
and then the data set was randomly divided into training (}/, data
points) and test (¥4 data points) sets (Table 2).

2.2.1.2. K-means clustering (KMC). K means clustering is the other
most frequently used method of data set splitting. This procedure
identifies relatively homogeneous groups of molecules (each
observation has the nearest distance to the mean of cluster) based
on selected properties (biologic activities (AKMC), structural vari-
ables (VKMC), or both (AVKMC)). In this study, the VKMC and
AVKMC methods were used. It is obvious that the AVKMC method
uses all the available information for clustering. The clusters were
divided into training (3/; data points) and test (% data points) sets.
The details of the test and training data sets are summarized in
Table 2.

2.2.2. Descriptor selection

Various feature selection methods have been used for selecting
reliable descriptors in QSAR studies. In this study, five frequently
used methods were used to check their ability for selecting relevant
descriptors. The training sets selected using data splitting methods
were used for selecting descriptors by employing five different
methods as explained below.

2.2.2.1. Stepwise regression (SR). In this method, all variables that
passed the tolerance criterion of 0.05 were entered in a single
equation, regardless of the stepwise entry method. However,
avariable was not entered if it would cause the tolerance of another
variable already present in the model to drop below the tolerance
criterion. The significance values are based on fitting the experi-
mental data to a single model. Therefore, they are generally invalid
and some excluded variables are relevant and valid parameters.

2.2.2.2. Variable blocked (200 variables in each block) stepwise
regression (VBSR). All independent variables that were selected in
the stepwise method were added to a single regression model.
However, different subsets of variables could be specified as entry
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Table 1
Details of studied structures.
Data set SN? NP IC50 range (uM) ICs0 (UM)© Reference
Resveratrol 1 14 0.00104—2.21 0.034 [1]
4-benzylideneaminobenzenesulfonamide 2 21 0.74-6.75 0.30 [4]
4-phenyliminomethylbenzenesulfonamide 3 10 1.95-6.54 0.30 [4]
Phenylazobenzen sulfonamide 4 9 2.04—-16.85 0.33 [5]
2 Set number.
b Number of data points.
€ ICsg value of celecoxib.
Table 2
Details of data sets and test-train data points.
SN? Molecule ID ICs0 (COX-1) ICs0 (COX-2) Y1 Y, AS VKMC AVKMC
4 3w 59.96 12.42 0.90 0.76 2 1 1
4 4w N.DP 16.85 * 0.74 1 1 2
4 6w N.D 14.63 * 0.75 1 2 1
4 7w 61.73 4.28 0.90 0.83 2 1 2
4 8w 23.28 2.04 0.99 0.88 1 1 1
4 9w 31.57 8.89 0.96° 0.78 1 1 1
4 10w 33.32 1134 0.95 0.76 1 1 1
4 11w 35.07 11.07 1.75 0.76 Outlier Outlier Outlier
4 12w 26.26 12.37 131 0.76 Outlier Outlier Outlier
2 benz6 108.34 2.87 0.86 0.85 1 2 1
2 benz7 159.07 222 0.82 0.87 2 1 2
2 benz8 183.50 2.73 0.81 0.85 1 1 1
2 benz9 141.25 3.00 0.83 0.85 1 1 1
2 benz10 105.63 6.75 0.86 0.79 1 1 1
2 benz11 195.74 3.36 0.80 0.84 1 1 1
2 benz12 148.20 3.42 0.83 0.84 2 1 1
2 benz13 182.19 4.60 0.81 0.82 2 1 2
2 benz14 190.47 494 0.80 0.81 1 1 2
2 benz15 313.83 9.88 0.76 0.77 1 1 2
2 benz16 383.36 5.45 0.74 0.81 1 1 1
2 benz17 38.20 2.78 0.95 0.85 2 1 1
2 benz18 23.15 2.85 1.00 0.85 1 1 2
2 benz19 78.20 2.95 0.89 0.85 2 1 2
2 benz20 85.13 0.74 0.88 0.94 1 1 2
2 benz21 47.91 3.69 0.93 0.83 1 1 1
2 benz22 43.80 3.50 0.94 0.84 1 2 1
2 benz23 110.27 3.09 0.85 0.84 1 2 2
2 benz24 109.69 3.40 0.86 0.84 1 1 1
2 benz25 167.09 2.93 0.82 0.85 1 1 1
2 benz26 155.95 2.71 0.82 0.85 1 2 1
3 phi27 63.59 3.11 0.91 0.84 1 1 1
3 phi28 80.20 438 0.88 0.82 1 1 1
3 phi29 63.22 4,62 0.91 0.82 1 2 1
3 phi30 43.89 6.54 0.94 0.79 1 2 1
3 phi31 64.42 1.95 0.91 0.88 1 2 1
3 phi32 51.83 5.09 0.93 0.81 2 1 2
3 phi33 60.74 4.14 0.91 0.83 1 1 1
3 phi34 31.27 4.28 0.97 0.82 1 1 1
3 phi35 23.99 3.13 1.00 0.84 2 1 1
3 phi36 56.73 3.72 0.92 0.83 1 2 1
1 res1 1.23 1.67 1.25 0.77 2 1 1
1 res2 9.10 7.80 1.07 0.68 1 1 1
1 res3 27.78 1.58 0.97 0.78 1 2 1
1 res4 2.83 0.80 1.18 0.82 1 1 1
1 res5 7.25 0.51 1.09 0.84 1 1 1
1 res6 11.35 0.36 1.05 0.86 1 2 1
1 res7 0.54 1.00 1.33 0.80 1 1 1
1 res8 2.07 0.05 1.20 0.98 2 1 2
1 res9 0.01 0.00 1.69 1.18 Outlier Outlier Outlier
1 res10 4.71 0.01 1.13 1.07 Outlier Outlier Outlier
1 res11 0.01 0.00 1.69 1.19 Outlier Outlier Outlier
1 res12 0.75 0.00 1.30 1.20 Outlier Outlier Outlier
1 res13 4.92 221 1.12 0.76 1 1 1
1 resl4 4.84 1.19 1.13 0.79 2 2 1

2 Set number.
b No data.
¢ The bolded data were selected as test set.
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into the stepwise regression using the SPSS software. In this
method, the selected parameters for the first subset were added to
the next subset and the stepwise regression was continued up to
the last subset.

2.2.2.3. Variable subsets (families) stepwise regression (VSSR). In
another attempt, 20 calculated subsets were used and the stepwise
regression was carried out separately for each subset. The validity
problem of significant values was the same in each subset;
however, as the parameters were selected separately for each
subset, the exclusion of significant parameters was lower than that
of the previous methods.

2.2.24. Partial least squares (PLS). Since multi-co-linearity among
the variables might affect the regression analysis, PLS is frequently
used as the variable redundant method. PLS analysis was carried
out using the Simca 9.0 software. The PLS method was used for both
feature selection as well as PLS model development. During PLS
development, the non-significant parameters were eliminated
according to the numerical values of the variable coefficients and
their importance, and the remaining parameters were used for both
the variable selection step for MLR equation as well as PLS model
development. A stepwise regression was run through the selected
descriptors using the PLS method and the final selected descriptors
were used for developing the MLR equations.

2.2.2.5. Genetic algorithm—partial least square (GA—PLS). Genetic
algorithms (GA) have been developed to mimic some of the processes
observed in natural evolution, which is an efficient strategy to search
for the global optima of solutions, and have been successfully applied
for feature selection in regression analysis [9]. Moreover, an approach
combining GA with PLS (GA—PLS) has also been proposed for variable
selection in QSAR and QSPR studies [10, 11]. The MATLab 7.1 software
was used to run the GA—PLS method developed by Leardi [12]. In this
method, the variables were divided into 6 subgroups and each
subgroup with the corresponding normalized pICsg values (Y>2) was
introduced to the algorithm as input. The output was produced after
20 runs as scored variables. The top 10% scores of each subgroup were
used for final feature selection.

In each feature selection method, the variables remaining after
exclusion of non-significant parameters were cross correlated in
order to select the most relevant parameters concerning the
following criteria: (1) p < 0.05; (2) having the highest correlation
with experimental data; and (3) having the lowest correlation with
each other.

2.2.3. MLR model development

The parameters selected using each method were used for
developing QSAR equations, and the goodness of fit and statistical
significance of the models were evaluated using R (correlation
coefficient), F (variance ratio), and the MPD (Mean Percentage
Deviation) values. The MPDs were calculated as follows:

100 Ypred, - YEXP.
MPD — S5 ey o

where, N denotes the nur%ber of data points, and Ypreq and Yexp, are
the predicted and experimental normalized pICsg values. The
developed models were evaluated using the leave many out (LMO)
and the leave one out (LOO) cross-validation methods. The LOO
cross-validation results can be used for estimating the overall mean
of squared prediction errors; however, there might be high
prediction errors for a subset (or subsets) which could not be
reflected in the overall errors. Therefore, in the latter case and
especially for model selection purposes, the LMO cross-validation is

preferred. In this study, both LOO and LMO methods were used to
investigate the robustness and prediction capability of the devel-
oped models. The prediction error sum of squares (PRESS) and the
cumulative prediction error sum of squares (CumPRESS) were
reported for the LMO and LOO validation methods, respectively.

3. Results and discussion
3.1. QSAR analyses of COX-2 inhibition

3.1.1. MLR models

Fifteen MLR equations were developed using 15 pairs of
feature selection and test-train selection methods. The developed
equations and the details of R, F, S.E., and MPD (back-calculated
and predicted) values are summarized in Table 3. It was found
that the best equations based on the R and F values (goodness of
fit), regardless of the feature selection methods, had emerged
from the AVKMC test-train selection method. The R, F, and MPD
(£SD) values of test sets for AVKMC series equations were found
to be in the range of 0.84—0.91, 25.91-29.53, and 4.8 (+4.5)—5.5
(+4.7), respectively. It should be noted that the higher values of
MPD for AVKMC and AS series when compared with the VKMC
method is owing to the high error of res8 (in the test set and
showing outlier behavior); therefore, when this compound is
deleted from the test set, the MPD (£SD) values are in the
reduced range of 3.8 (£3.1)—4.5 (43.3). The results indicated that
all 15 equations are applicable to the model COX-2 inhibitory
activity of these diaryl compounds and the differences in the
model properties are owing to the entering of some compounds
(i.e. res8 in test or train set). Subsequently, the equations could be
used to accurately predict the activity of these compounds.
However, in order to avoid confusion for the user, Eq. (16) which
produces less prediction error of 1.6 (£0.8) and contains two
frequently selected variables (R6m™ and EEIGO7D), was selected
as the best equation. This equation could predict 100% of the
desired activities with prediction error less than 3.0%, which is
comparable with the reported experimental RSD values of 3.0% for
similar compounds [1].

3.1.2. PLS models

PLS models were developed using three sets of training data.
The details of the developed models are summarized in Table 4.
This method was found to produce higher correlation coefficients;
however, the other results showed no superiority when compared
to the MLR models.

3.2. Comparison of the five feature selection methods

As discussed in Section 3.1.1, the loss of latent variables in the
stepwise regression method is one of the problems faced in feature
selection. It was found that the number of selected parameters
increased (Fig. 4) when using the VSSR method, and it was
observed that the use of VBSR without any logical classification of
descriptors could not improve the selection procedure. It can be
seen in the figure that the GA—PLS and VSSR methods could select
the highest number of significant parameters whereas the other
methods lost several significant parameters. The most significant
and relevant parameters selected by the last three methods (VSSR,
PLS, GA—PLS) were found to be similar, while the parameters
selected by the first two methods, mainly VBSR, were found to be
different for the same data set. This was probably owing to the
losses of parameters during the selection process. Although the
VSSR method could select the most relevant parameters as PLS and
GA—PLS, its main disadvantage was the same as that for the SR
method for each family as subsets and it is possible to loose the
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Table 3

Details of developed equations along with test-train and feature selection methods and statistical criteria.

Developed equations for COX-2 inhibitory activity

MPD (£SD)* MPD (£SD)"

Equation number Test-train selection Feature selection Equations

5.7 (+4.5)
24 (+1.9)

083 1749 004 25(£1.9)
083 1096 005 2.9 (+2.1)

—14.81(2.66) + 4.14(0.68)BEHv1 — 5.14(0.96)R8m™ — 0.06(0.02)ms — 1.20(0.43)G1v
Y, =1.20(0.11) + 0.04(0.02)Mor27u + 0.16(0.03)EEIGO8D -+ 0.09(0.03)Mor16m — 1.63(0.63)G1v

Y,

SR
SR

AS

VKMC

— 0.05(0.01)RDF120p — 1.24(0.25)HATS1u
Y, = 0.61(0.02) + 5.08(0.57)R6m* -+ 0.09(0.02)EEIGO7D + 0.52(0.15)RBF — 0.01(0.00)RDF035p

Y2

5.5 (+4.7)
4.7 (+£4.6)
3.0 (+3.3)
4.8 (+£4.5)
2.8 (+4.6)
2.0 (+1.8)
5.1 (+4.5)

0.89 29.53 0.05 1.9 (+1.4)
0.83 16.98 0.03 2.8 (+2.0)
0.76 14.44 0.04 3.3 (+2.8)
0.84 2643 0.02 23 (+2.8)
0.84 25.02 0.02 2.6 (+2.8)

SR

AVKMC
AS

—16.47(2.64) + 4.44(0.68)BEHV1 — 0.05(0.02)Ms — 0.04(0.01)RDF120p + 0.03(0.01)RDF010e

VBSR

Y, = 0.81(0.04) + 0.12(0.02)Mor27u — 0.22(0.05)Mor14v — 0.78(0.19)R2e*

Y, = 0.72(0.03) + 3.96(0.60)R6m™ + 1.15(0.21)RBF — 0.0004(0.0000)

VBSR

VKMC

MW

VBSR

AVKMC
AS

Y, = 0.74(0.04) +4.33(0.61)R6M* + 0.09(0.02)EEIGO7d — 0.07(0.02)R2e

VSSR

860 004 3.5(+3.9)

0.88 25.91

0.73

Y, = 0.74(0.09) + 0.05(0.02)Mor27u — 0.28(0.12)HATS2u + 0.04(0.02)L3u + 0.03(0.01)RDF010e

VSSR

VKMC

1.9 (£1.7)

0.02

Y, = 0.40(0.08) + 4.01(0.55)R6m* -+ 0.06(0.01)EEIGO7D -+ 0.11(0.04)JHETP + 0.50(0.16)RBF

Y, = 0.64(0.03) + 4.15(0.8)R6m* + 0.08(0.02)EEIGO7D

AVKMC VSSR

10
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0.73(0.05) + 2.87(0.86)R6M™ + 0.07(0.02)EEIGO7D — 0.02(0.01)ALOGP

0.64(0.02) + 5.55(0.79)R6m™ + 0.06(0.01)EEIGO7D + 0.50(0.14)RBF — 1.89(0.5)R7m™ — 0.12(0.04)H8e 0.91

0.33(0.11) + 3.67(0.74)R6M" + 0.08(+0.02)EEIGO7D + 0.17(0.06)JHETP

Y, = 0.90(0.04) + 0.04(0.02)Mor27u — 0.45(0.11)HATS2E + 0.50(0.16)GGIS

0.40(0.08) + 4.01(0.55)R6m™ + 0.06(0.01)EEIGO7D -+ 0.11(0.04)JHETP + 0.50(0.16)RBF

1.79(0.10) — 0.26(0.05)GATSIM — 0.43(0.12)HOp

Table 4

P - Details of developed PLS model.
Q in g in in o Q
VR A VRN Bt Training R Number Number of MPD (£SD) for MPD (+SD) for
N =N o ~ selection of PCs parameters train set test set
N e = e AS 091 1 61 34 (+2.9) 43 (£5.9)
—~ o~~~ VKMC 0.88 2 49 3.5 (+3.9) 2.4 (+2.4)

~
a2 2 AVKMC 093 4 111 14 (£1.5) 5.9 (+4.5)
ulu S A A
M © NN = Q .
N = & e gl relevant parameters from each subset. In order to overcome this
Doy 9Ty © drawback, it has been recommended that the number of variables
SECECEERE in each variable subset should be decreased. In that case, the
Lo Q QN B probability of the latent variable loss decreases, and the method
23R8 8= QH 3 could be introduced as an alternative for the classic stepwise
T © RN 2 methods. Alternatively, GA—PLS could be used in order to ensure
S o S S o 5] that most of the relevant parameters are selected. Regarding the

PLS method, its disadvantage was the high cross correlation
between the selected parameters wherein all selected parameters
could evaluate the response well.

3.3. Comparison of the three test-train selection methods

It should be noted as shown in Section 3.1 that the best equation
emerged from the AVKMC training set, and the use of all informa-
tion space of data sets (response space and descriptor space) leads
to more general training sets. Owing to the generality of the
training set selected using this method, it can be indicated that
almost all feature selection methods would lead to acceptable
equations with the lowest prediction errors. Since the VKMC
method uses only descriptors’ information, it produced less
significant equations, where in some cases (Egs. (9) and (12)) low
prediction errors were produced. Also, the variation in the feature
selection methods leads to different equations and it can be seen
that there is least similarity between selected descriptors in this
method. Similar to the AVKMC method, the AS method was found
to be less sensitive to the feature selection method and the most
similar equations were found in this method; however, the equa-
tions developed using this method were found to produce the
highest prediction errors.

3.4. QSAR analysis of COX-1 inhibition

The training and test sets were selected using the AVKMC
method and the details of selection are summarized in Table 2. The
GA—PLS feature selection method was used for selecting relevant

ST T T T B
140 A
8 AS
» 120 1
g B VKMo
2 100 A o1
LLL s —
N2 98 < << S< a =
EER JCO0 80 E RIEME A==
g & 80 - =
= = k-
2 ] -
<= o 60 e
& % . = - gans
X |£% o R Si==
o) v Suleg? £ 401 =] e
Q= 8= Oz (8¢ 5 bl 2
$¥,8% 5¥EE 2 =
wv =X = —_ .
<>T <> TT|Z¢g 20 PoR
S LR [
=1 LR B
i =5 L)
=3 & &
g 2 a SR VBSR DBSR PLS GA-PLS
[
[ o O s
& |aa Feature selection method
© [
>
TN Mm YN 2n ?E Fig. 4. Comparison of the number of significant parameters selected using different

feature selection methods, SR: stepwise regression, VBSR: Variable blocked (200
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Table 5
The results for leave one out and 9 fold leave many out cross validations.
Equation number 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
LMO (PRESS) 0.03 0.04 0.02 0.03 0.02 0.04 0.01 0.02 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.02
0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.02
0.01 0.03 0.00 0.01 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.10
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.02
0.00° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
0.04 0.06 0.02 0.03 0.02 0.06 0.02 0.03 0.02 0.04 0.04 0.02 0.03 0.02 0.02 0.09
LOO (CumPRESS) 0.1 0.16 0.07 0.08 0.07 0.12 0.06 0.08 0.08 0.08 0.08 0.07 0.08 0.1 0.08 0.25

2 0.00 means less than 0.005.

parameters with regard to the selection criteria explained in
Section 2.2.2. The QSAR equation was developed as follows:

Y; = 1.79(0.10) — 0.26(0.05)GATSIM — 0.43(0.12)HOp ~ (17)

The MPD (4SD) values obtained using this equation for the
training and prediction set were 5.0 (£3.9) and 7.7 (£5.6),
respectively. The significance criterion was p <0.05 for both
descriptors. It was found that the model could predict 88.8% of data
with prediction error less than 10.0%. However, the developed
model could not predict the COX-2 inhibition activity, and the
parameters were not significant.

3.5. Selectivity prediction

The proposed QSAR model for COX-2 inhibition (Eq. (16) of
Table 3) and COX-1 inhibition (Eq. (17)) was used for predicting

Table 6
Selected descriptors for COX-2 and COX-1 inhibitory activities.

the selectivity of entire structures, and the MPD (4SD) values
obtained were 12.7 (+£10.4) and 16.9 (£9.6), respectively, for the
training and test data sets. It was found that the proposed method
could predict about 50% of selectivity data with prediction error
less than 10.0%.

3.6. Method validation

The leave one out and leave many out cross-validation methods
were used for evaluating the robustness of the developed models,
and the PRESS and CumPRESS values obtained are reported in
Table 5. It can be seen in the table that there is no significant
difference between the errors produced by the different models
and the acceptable range of prediction (0.00—0.04 and 0.06—0.16
for the LMO and LOO methods, respectively), which indicates that
all the developed models are valid and applicable for different sets
of data points.

COX-2

Variable name Explanation

Descriptor family

Mor08m 3D-MoRSE — signal 08/weighted by atomic masses 3D-MoRSE descriptors
Mor14v 3D-MoRSE — signal 14/weighted by atomic van der Waals volumes 3D-MoRSE descriptors
Mor16m 3D-MoRSE — signal 16/weighted by atomic masses 3D-MOoRSE descriptors
Mor17u 3D-MoRSE — signal 17/unweighted 3D-MOoRSE descriptors
Mor27u 3D-MoRSE — signal 27/unweighted 3D-MoRSE descriptors
BEHvV1 Highest eigenvalue n. 1 of Burden matrix /weighted by atomic van der Waals volumes Burden eigenvalues
BEHvV1 Highest eigenvalue n. 1 of Burden matrix /weighted by atomic van der Waals volumes Burden eigenvalues

Ms Mean electrotopological state Constitutional descriptors
RBF Rotatable bond fraction Constitutional descriptors
EEig07d Eigenvalue 07 from edge adj. matrix weighted by dipole moments Edge adjacency indices
EEig08d Eigenvalue 08 from edge adj. matrix weighted by dipole moments Edge adjacency indices
H8e H autocorrelation of lag 8/weighted by atomic Sanderson electronegativities GETAWAY descriptors
HATS1u Leverage-weighted autocorrelation of lag 1/unweighted GETAWAY descriptors
HATS2e Leverage-weighted autocorrelation of lag 2/weighted by atomic Sanderson electronegativities GETAWAY descriptors
HATS2u Leverage-weighted autocorrelation of lag 2/unweighted GETAWAY descriptors

R2e R autocorrelation of lag 2/weighted by atomic Sanderson electronegativities

GETAWAY descriptors

R2e+ R maximal autocorrelation of lag 2/weighted by atomic Sanderson electronegativities GETAWAY descriptors
R6m+ R maximal autocorrelation of lag 6/weighted by atomic masses GETAWAY descriptors
R7m+ R maximal autocorrelation of lag 7/weighted by atomic masses GETAWAY descriptors
R8u+ R maximal autocorrelation of lag 8/unweighted GETAWAY descriptors
ALOGP Ghose-Crippen octanol-water partition coeff. (logP) Molecular properties
RDF010e Radial Distribution Function — 1.0/weighted by atomic Sanderson electronegativities RDF descriptors
RDF035p Radial Distribution Function — 3.5/weighted by atomic polarizabilities RDF descriptors
RDF120p Radial Distribution Function — 12.0/weighted by atomic polarizabilities RDF descriptors

GGI8 Topological charge index of order 8 Topological charge indices
Jhetp Balaban-type index from polarizability weighted distance matrix Topological descriptors
Glv 1st component symmetry directional WHIM index /weighted by atomic van der Waals volumes WHIM descriptors

L3u 3rd component size directional WHIM index/unweighted WHIM descriptors
GATS1m Geary autocorrelation — lag 1 /weighted by atomic masses 2D autocorrelations
HOp H autocorrelation of lag 0 /weighted by atomic polarizabilities GETAWAY descriptors

The frequently selected parameters are bolded.
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3.7. Descriptor evaluation

The parameters selected using different methods and their
definitions are shown in Table 6. The selected descriptors belong to
Constitutional, 3D-MoRSE, Edge adjacency indices, Topological and
GETAWAY descriptors. The results indicate that in most cases
a combination of one autocorrelation (R6m™") and one edge adja-
cency index (EEig07d) could represent the COX-2 inhibition of the
drugs investigated. There is at least one descriptor weighted by
atomic mass or volume and one descriptor by dipole moment or
electronegativity in all models. In addition, the RBF parameter,
which is a measure of molecule flexibility, was selected frequently.
It was found that the structures with the highest efficiency were
those with the lowest flexibility, atomic distribution, and the
maximum negative electronegativity. These findings are in agree-
ment with the previous findings regarding a limited space of active
site and its hydrophobic characteristics [10].

The low electronegativity is favorable for COX-1 inhibition while
this activity is reduced by an increase in the size of the molecules. In
summary, steric effects are important for both COX-1 and COX-2
inhibitions, and in order to design an effective COX-2 inhibitor
with a moderate COX-1 inhibitory effect, an optimum conformation
should be found. Also, the electronegativity of the substitute should
be optimized.

4. Conclusion

The results suggest that the selective inhibition is dependent on
the size and polarizability, which is in agreement with the previous
findings of the limited space of active site and its hydrophobic
characteristics. Similar results of the PLS, GA—PLS, and the VSSR
methods indicated that these methods could be used for the feature
selection whereas the highest number of significant and relevant
variables could be selected using the GA—PLS method. Also despite
of PLS, cross correlation between selected parameters are less in
GA—PLS. Owing to the low sensitivity to the feature selection
methods, the AVKMC was selected as an appropriate test-train
selection method. The experiments were performed on one data
set and further investigations should be carried out on a number of
data sets to determine the most appropriate method of feature
selection and test-train selection. To conclude, the findings would
facilitate the development of COX-2 inhibitors with a mild inhibi-
tory activity of COX-1 isoform.

Acknowledgments

We thank Dr Dastmalchi and Dr Ghafourian to their kind
permission of using Dragon and Simca software, and Drug Applied
Research Centre of Tabriz University of Medical Sciences for the
partial financial support under grant No. 88/11.

References

[1] M. Murias, N. Handler, T. Erker, K. Pleban, G. Ecker, P. Saiko, T. Szekeres,
W. Jdger, Resveratrol analogues as selective cyclooxygenase-2 inhibitors:
synthesis and structure-activity relationship. Bioorg. Med. Chem. 12 (2004)
5571-5578.

S. Prasanna, E. Manivannan, S.C. Chaturvedi, QSAR analyses of conformation-

ally restricted 1,5-diaryl pyrazoles as selective COX-2 inhibitors: application of

connection table representation of ligands. Bioorg. Med. Chem. Lett. 15 (2005)

2097-2102.

M. Khoshneviszadeh, N. Edraki, R. Miri, B. Hemmateenejad, Exploring QSAR

for substituted 2-sulfonyl-phenyl-indol derivatives as potent and selective

COX-2 inhibitors using different chemometrics tools. Chem. Biol. Drug. Des. 72

(2008) 564—574.

W.J. Tsai, Y,J. Shiao, S.J. Lin, W.E. Chiou, L.C. Lin, T.H. Yang, C.M. Teng, T.S. Wu, L.

M. Yang, Selective COX-2 inhibitors. Part 1: synthesis and biological evaluation

of phenylazobenzenesulfonamides. Bioorg. Med. Chem. Lett. 16 (2006)

4440—-4443.

SJ. Lin, WJJ. Tsai, W.E. Chiou, T.H. Yang, L.M. Yang, Selective COX-2 inhibitors.

Part 2: synthesis and biological evaluation of 4-benzylideneamino- and 4-

phenyliminomethyl-benzenesulfonamides. Bioorg. Med. Chem. 16 (2008)

2697-2706.

Z. Debeljak, V. Marohni¢, G. Srecnik, M. Medi¢-Sari¢, Novel approach to

evolutionary neural network based descriptor selection and QSAR model

development. J. Comput. Aided. Mol. Des. 19 (2005) 835—855.

Organazation for Economic Co-operation and Development, Guidance Docu-

ment on the Validation of (Quantitative) Structure-Activity Relationship ((Q)

SAR) Models OECD series on testing and assessment 69. OECD document ENV/

JM/MONO. Organazation for Economic Co-operation and Development, 2007,

pp 55—65.

A. Golbraikh, M. Shen, Z. Xiao, Y.D. Xiao, K.H. Lee, A. Tropsha, Rational selection

of training and test sets for the development of validated QSAR models.

J. Comput. Aided. Mol. Des. 17 (2003) 241—-253.

[9] R. Leardi, M.B. Seasholtz, R.]. Pell, Variable selection for multivariate calibra-
tion using a genetic algorithm: prediction of additive concentrations in
polymer films from Fourier transform-infrared spectral data. Anal. Chim. Acta.
461 (2002) 189—200.

[10] H. Kubinyi, Evolutionary variable selection in regression and PLS analyses.
J. Chemom 10 (1996) 119—133.

[11] R. Leardi, A.L. GonzAlez, Genetic algorithms applied to feature selection in PLS
regression: how and when to use them. Chemom. Intel. Lab. Sys. 41 (1998)
195-207.

[12] P. Silakari, S.D. Shrivastava, G. Silakari, D.V. Kohli, G. Rambabu, S. Srivastava, S.
K. Shrivastava, O. Silakari, QSAR analysis of 1,3-diaryl-4,5,6,7-tetrahydro-2H-
isoindole derivatives as selective COX-2 inhibitors. Eur. . Med. Chem. 43
(2008) 1559—-1569.

[2

i3

4

(5

6

[7

8



